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Seeking the optimal hole shapes in elastic bodies, which cause minimal stress 
concentration* results in minimax optimization problems with a local criterion. 
These problems are considered in this paper within the framework of plane eias- 
ticity theory, and it is proved that holes with equi-stressed boundaries are opt- 
imal. 

Problems of boundary optimization were investigated earlier in Cl-4 &n connec- 
tion with seeking the shapes of twisted rods possessing maximum torsional stiff- 
ness, and problems to construct equi-stressed holes in plates were studied in 

[ 5- 81. 

I, Let us examine the plane problem of elasticity theory on the state of stress of an 
infinite plate weakened by a hole, Let G denote a domain in the zy plane which is 

occupied by the plate material, while I’ is the hole boundary. Let US assume that the 
plate &&&es to infi~ty, while the hole contour T’ is free of applied loads. We write 
the, appropriate boundary conditions on r and the condition at infinity in the form 

on = 0, T,, =I: 0 fz, y) E f (I.11 

(o& = or, (o,), -- o,, (7,{,), = 0 

where or and o, are given positive constants, and n and t denote the normal and 
tangent directions to the contour. 

For a given contour shape I’ the stress distribution in the domainG + ]ris de- 

termined completely by conditions f 1. I ) . As is known, using the stress function q~ 

associated with the stress tensor components by means of the relationships :tf, Lz &r,, 
CT?, = cp.,X, ,rJ.Xr/ := - CP.rli, reduces the problem of seeking the stresses to the sol ‘- 

ution of the biharmonic equation 

q&XXX -;I 2%%zQj -i.- (I\?/!,$,!i = 0 (2, ?!I E c (1.2) 

under the boundary conditions (1. I. 1, The subscripts in (1.2) denote differentation 
with respect to the appropriate variables. 

For each point (a~, y) E CT + r we characterize the state of stress by the 
function F of stress tensor invariants 

F = E’ (I,, I,) (J.*3) 

I, If 0, + GUI I, = a_Xri* - &Or, 

We understand F to be a function whose attainment at the point (2, y) E? G -i_ r 
of a given value k2 (the constant ,@\is a material characteristic) means that the 
material is in the limit state at the point mentioned, Deformations of the material 
are elastic if the inequalityp ‘< kz is satisfied in appropriate domains. Violation of 
inequality is treated in different mechanics theories as the appearance of a flow zone, 
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domains of inelastic strains, and a discontinuity in the continuity of the material and 
other effects. Henceforth, we shall interpret the conditionF = Pas a plasticity 
condition. Giving F by the expressions 

F = II2 + 31, (1.4) 

F = II2 + 41, (1.5) 

corresponds to the Mises and Tresca plasticity criteria. In addition to the two exp - 
ressions mentioned for F, even more general dependences of F on the invariants 
I1 and 1, will be examined below. It will hence be assumed that the expression 

for F, which is represented in terms of the stress tensor components, is a homogen - 
eous function with a homogeneity index of 2. 

For a given I’ let the boundary value problem (1.1) , (1.2 ) be solved for 
certain sufficiently small values of the parameters 6r, % and let the stresses us 

(2, y), err, (x, y), ‘G,~ (I, y) be thereby found. Then, a set of points G,, c G 
+ I’ can be determined where the maximum of the function F 

Fe = (OG~ = max, F, (s,Y) E G + r 

is realized. 

Then if the values (03, and (o~)~ increase in proportion to a certain para- 
meter P, i.e., it is considered that (o,), = pa,, (a,,), = per,, then the plastic 
state will first be achieved at the points (z, y) E G, for the value p. = k / JfF\ 
of this parameter. Evidently, the smaller the value of F,, the more the plastic stiains 
appear in the plate for large loads (large values of PO) , Hence, expansion of the 
range of loads for which the strains are elastic and fluidity zones do not occur in the 

plate is achieved because of minimizing the quantity F,. 
We arrive at the following optimization problem. Determine the shape of the 

contour I? for which the minimum of the maximum is achieved for the quantity F 
inthedomainG+ I’, i.e., 

F, = minr F, = minr max,vF (1.6) 

The problem (1. 1) - (1.3 ) , (1.6 ) formulated is among the optimization prob- 
lems with local quality criteria because of the local nature of the functional to be 
optimized. In seeking the minimum in r it is assumed in (1. 6.) that the desired 

contour cannot shrink to a point., i. e., the absence of a cavity is not allowed. The 

shape of the hole contour plays the part of the “control” function, and (1. 2 ) enters 
the optimization problem as a differential constraint. 

2. Before investigating the optimality conditions in the problem formulated, 
let us note a property of harmonic functions which is used later. 

In the xy plane, let there be n holes bounded by the closed contours rk 

(k = 1, 2, . . ., n). Let us consider a family of harmonic functions, continuous in 

G + r and tending to a given positive constant A at infinity, in a domain G 
bounded by the contour I’ = Zrk . For any function from this family, and taking 

account of its values on the boundary r ((0)~ = f) according to the maximum 
principle (see [9], for instance), the following inequality holds 

I 0 (5, Y> I g maxt, 1 f (E, q) 1, k Y> E G + G (E, 1) E JJ 
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In particular, it hence follows that 

A < max9lfl (2.1) 

If the strict equality is realized in (2. l), then the function o is identically equal to 
the constant A. Hence, the minimum of the functional maxt,,j f 1 ((5, 7) c_. r)with 

respect to f is achieved on the unique function f (E, 9) z A (0 (z, Y) z A) 
of the family under consideration, and its equals A, i. e. , 

minf maxI, 1 f 1 = A (2.2) 

We use the mentioned property of harminic functions below to estimate the stresses on 
the hole boundaries. 

3. Let us first examine the expression (1.4) as F , which equals the square of 
the tangential stress intensity to the accuracy of a factor and corresponds th the Mises 

plasticity criterion. 

Let us introduce the auxiliary function 
0 = 0.r + (I, (3.1) 

which is harmonic, as is known (see [lo], for example). Taking account of (1.1) 
and the equality oa -/- o, = u,~ + (Tt , we have 

Ao = 0, (x, y) E G + I’, (w)~ = crl, (co), = crl + CT~ (3.2) 

where A is the Laplace operator. Furthermore, using the invariance of the expression 

(1.4) relative to passage from the ry axes to the directions n and t , and the 

boundary conditions (1.1). we arrive at the following formula for the boundary values 
of F: 

(F),- = Ot3 (3.3 1 

Applying the property of harmonic functions (2. 2) noted to the function. co. 
defined by the relations (3.2) and comparing the expressions (3. 2 ) and (3.3 ) for the 

boundary values of F and o, we obtain that the minimum of the maximum values of 
1 co 1 and F on the contour r is achieved if and only if the stress ot is constant 

along the contour 
(at)l’ = 01 + CT, 

(3.4) 

It is shown in [S] (see [S] also ) that the contours r satisfying condition (3.4) form 
a one-parameter family of ellipses ~‘ffr-~ + ~~o.2-a = x2, where a2 is a parameter. 

Now, let us show that compliance with the equality (3.4) is a necessary and 
sufficient condition for optimality in the problem (1. 1) (1.3 ), (1.6 ). 

For this it will be sufficient to prove that for the contours r satisfying con - 
dition (3.4) the maximum of the function F considered in the domain G + r is 

reached on the contour I? and hence 

max(,, r,~F~;+rF = maxcX, U~~rF 
(3.5) 

Indeed, from the equality (3.5) assumed and the fact that for arbitrary contours 
r the maximum of F’ in the domain G + r is not less than the maximum of F 

on r it follows that the necessary and sufficient condition (3.4) for minimality of the 
maximum value of F on r will also be a necessary and sufficient condition for mini- 
mality of the maximum value of F in the domain G +,r,whereF,=minrmax(,, 2/jErF. 
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Let us use the complex representation of the stress tensor components in the 
terms of the potentials 0 (z), y (2) of Kolosov-Muskhelishvili ( [lOI ) 

OX i- o!~ = 4 Re @ (s), ox - ‘J!, -I- 2i%, = 2/ZW (z) + Y (z)] (3.6) 
z=s-+i?/,z=s--iy 

Upon compliancewith condition (3.4) the function o = ox + IS!, = o1 + 0s and 
therefore, @’ (z) = 0. The equations (3. 6 ) are converted into [6 ] 

(J, + G’?I = Ul + 029 0, - u!, + 2&, = 2Y (3.7 1 

We multiply the second equation in (3.7 ) by the complex-conjugate. Taking 
account of (3.71, we will have 

Q = (Ul + oJ2 + 4 (TX!,2 - chq,) = 4YT 
(3.8 1 

Let us note that the function Q differs from the expression for F only by the 
factor in the second member. We express F in terms of y and T. To do this, 
let us use (1.4 ) and (3.8 ). We have 

F = 3/$Q + l/, (q + r.rJ2 =I 3YF + l/i (ol + q,) 2 (3.9) 

Furth~more, let us represent the functions Y and F in the form Yp = r~, + 
iv, Y = u - iv, where the quantities U and v satisfy the Cauchy- Riemann con- 

ditions. Then (3.9) has the form F = 3 (u” + v”) + 1/3 (a, + CT,)~. Let us 
apply the Laplace operator to the expression obtained. Performing elementary mani- 
pulations and taking account of the Cauchy-Piemann condition as well as the resulting 

equality Au = Av = 0, it is easy to show that AF = 12 (VU)" > 0. There - 
fore, F is a superharmonic function which does not achieve the maximum value at 

internal pcints of the domain G f r. Comparing the values (F)r = (ul + u2)2 

and (FL, = @I2 + CT,2 - (51cT2 results in the deduction that the maximum of F 

is reached on I?. The optimality of equally stressed contours is proved. 
We note that condition (3.4) is both necessary and sufficient condition for a 

global optimum. 

4. Now, let us assume that there are n holes in a plate which are bounded by 
the contours YVlr (r = Xrk, k = 1, 2, . . ., n). The boundary conditions on I’ and 

the conditions at infinity have the form (1.1) . In the case under consideration, the 
application of the property (2.2) permits showingthat theminimum of the maximum 
value of F is achieved on r upon compliance with the condition (3.41, Let us 

note that the shapes of the equally stressed contours satisfying (3.4) have been found 
in the case of two holes as well as for certain periodic systems of holes in [6 1. Further- 
more, we note that the proof of the inequality AF > 0 was independent of the con- 
nectedness of the domain G j- r. Hence, the maximum of F ( in the domain 

G + I’) is achieved on r even in the presence of n equally stressed holes. There- 
fore, equally stressed holes will be optimal in the cases under consideration also. 

5. Now, let us consider the case when F is given by (1.5 1, which corresponds 
to the Tresca plasticity criterion. The boundary values for the stress and the conditions 
at the infinitely remote point will be assumed as before. It can be shown for the func- 
tional under consideration that theboundary values of P are determined on r by the 
same formula (F)r = at2 as in Sect 3. 
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Hence, the assertion that the minimum of the maximum value of * k’ is achieved on 
the contour I? remains true. The proof of the inequality AF > 0 becomes 
shorter since F = Q in the case under consideration. We have AF = 16 (Vu)’ 

> 0. Therefore, equally stressed holes turn out to be optimal even in the 
sense, of the Tcesca criterion. 

6. Let us examine the more general dependence of F on the stress tensor 
invariants I,, I, by assuming nonnegativity of the first and second partial derivatives 
of F with respect to Is, i.e., 

F = F (II, I,), dF I aI, > 0, PF I dIg2 > 0 (6.1) 

On the basis of the properties of homogeneity and posftivity of p as well as 
with the equalities (Ii)r = of, (1,)~ = 0 taken into account, we arrive at the foll- 

owing expression (F), = uut2, where a > 0. tlse of the representation for (F)r 
and the property of harmonic functions noted in Sect. 2, results directly in the de- 

duction that a minimum of the maximum of F is achieved on r, for equally stressed 
contours. Furthermore, let us take account of condition (6.1) and the fact that in the 

case of equally stressed contours I, = cri + us in the domain G + I’. Performing 
computations completely analogous to those executed in Sect. 3, it can be shown that 
for a plate with holes satisfying the condition (3.4), the following inequality is valid 

AF =_r g (vrdz + 4 @,?/)EG ! I 
(6.2) 

Under the assumptions made, the function F turns out to be superharmonic, 
and therefore, does not reach the maximum at interior points of the domain G + I’. 

Let us compare the values F (a, + 02, 0) and F (a, -k (I,, - UlU.2,) taken by the 
functions F on I’ and at the infinitely remote point. Noting that (I,), & (1s)r 

and using the first of the inequalities (6.11, we obtain (F)r > (F),. Therefore, in 
the case under consideration (3.5 ) is valid. It hence results that the equally stressed 

holes ace optimal. 

7. The analyses performed in Sect. 3 can be extended to the case when a 
pressure cr,, (uO > 0 is a given constant) is applied to the hole boundaries, i. e., 

(dr = --a,.‘ The second boundary condition on r and the conditions at the in- 
finitely remote point ace given by (1.1). Using these boundary conditions and (3.11, 

we obtain an expression for values of the function F on the hole contour (F)r = ots 

+ u,ut + oo’* On the basis of the formula presented for (F)p and the property . 
(2. Z), it can be shown that the mimimum of the maximum value of (F)r is realized 

if and only if (ot)r = oo + oi + os.It is easy to note that the inequalities (F)r > 

(F)m, AF > 0, and therefore, the relationship (3.5) also, ace valid in this case. 
Hence, equally stressed holes which satisfy the condition (of)r = UO + or $_ o2, 
ace optimal. 

Problems similar to those considered in this paper occur when seeking the opt- 
imal shapes of elastic bodies of finite size in the construction of optima1”conjugate.s ” 
for bodies with sharply varying geometcics and high stress concentrations and in de - 

signing optimal reinforcements of holes [ 11 - 16 1. 
The author is grateful to V. M. Entov, F. L. Checnousko, and D. I. Sherman 
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for useful discussion of the results of this research. 
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